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Wireless Sensing 101
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CSl as a Sensing Primitive
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Why Not Edge Based Sensing?
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Challenges of Inferencing on loT Devices

More Resources = More Energy
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Compressing a Neural Network
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Related Work and Research Gaps

Traditional Wi-Fi Sensing

Mainly focuses onimproving
performance and finding new
and innovative applications.
Less interestin actual system
implementation

System Consideration for IoT

Some recent work do look into
on-device Wi-Fisensing on
microcontrollers (like ESP-32)

from a quantization perspective.

Works like EfficientFilookinto
edge-based deployment.

TinyML Related Work

Has developedtechniques like
guantization, pruning, etc.
Tools like TensorFlow Lite and
Micro. Does not specifically
focus on wireless sensing




Design a framework that provides a best-effort
compressed neural network for a Wi-Fi sensing
application such that the user can tune the
trade off between performance and cost




WISDOM: Inputs
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WISDOM: Outputs
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WISDOM: Utility Function

Utility Performance Cost
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Application Use Case: Human Activity Recognition
Static Dynamic
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Dataset is open-sourced at: https://cse.iitm.ac.in/~sense/wisdom/



https://cse.iitm.ac.in/~sense/wisdom/

WISDOM: Optimization Problem
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WISDOM: Training
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Testbed for Conducting Measurements T
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Key Insights (1)
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compared to
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Key Insights (2)
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Key Insights (3)
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Key Insights (5)

Compressing a model with higher number of
parameters yields a more accurate model than

an uncompressed model with lesser number of
parameters

(while having a similar footprint in terms of energy and memory)
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Baseline Models and Scenarios

There are additional 126 different test cases
with different combination of weights

S1: More weight
to accuracy
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/
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Results: Models Chosen by wIsDOM have Higher Utility
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CDF

Results: Models Chosen by wIsDoM have Higher Utility

The CDF of utility difference
between Q or NQ model and
WISDOM chosen model for all
126 test cases is always
positive and starts increasing
after 0.5
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Results: Models Chosen by WISDOM Uses Less Resources
W hile Maintaining High Accuracy

Quantized BE= WISDOM
100 WISDOM chosen models show a
N ‘ percentage decrease similar to Q

models for resource consumption,
but still maintains higher accuracy
of ~15% compared to Q models.
The percentage decrease is w.r.t
NQ models
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WISDOM chosen model outperforms the best

guantized model 83% of time, and the best
non-compressed model 99% of time
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Thank You, Questions?

Manoj Lenka, lenka98.github.io and Ayon Chakraborty, cse.iitm.ac.in/~ayon

Contact: ¢cs22s008@cse.iitm.ac.in, ayon@cse.iitm.ac.in

Artifacts available at: https://cse.iitm.ac.in/~sense/wisdom/
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