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Abstract—This artifact covers the dataset, models and code
used in our work, On-Device Deep Learning for IoT-based Wireless
Sensing Applications [1], to appear in the WiSense workshop held
in conjunction with IEEE PerCom 2024. The artifact is also
available publicly on: https://github.com/senselab-iitm/wisdom.
For further details regarding the project, please visit https:
//cse.iitm.ac.in/%7Esense/wisdom.

I. INTRODUCTION

The artifact primarily consists of measurement traces ob-
tained from various wireless sensing experiments. As dis-
cussed in our paper, we record the Wi-Fi Channel State
Information (CSI) corresponding to various human activities.
Subsequently, we build neural network models for such Hu-
man Activity Recognition (HAR) tasks, which we extensively
benchmark.

Overall, our artifact consists of three directories: data,
models and scripts. The scripts are available in GitHub,
while data and models are available in public Google
Drive folders, link to which is available in GitHub and project
website.

• The data directory contains the raw CSI collected for
various HAR tasks. Second, it contains current measure-
ment logs obtained by running different inferencing tasks
on the ESP32 C3 MINI [2] microcontroller. The current
measurements are obtained using the Power Profiler Kit
II (PPK2) [3] (more on this in Sec. II).

• Various baseline models that are trained using the CSI
HAR data are kept in the models directory. It also
contains the compressed TF-LITE [4] models (more on
this in Sec. III).

• The scripts mainly have three parts. First, to pre-
process and visualize the HAR CSI data. Second, to
generate and train models with different architecture and
parameters. Third, to compress and test the models (more
on this in Sec. IV).

Further, the above dataset/scripts can be used to create and
train any new Tensorflow [5] model (beyond the shared
ones), as well as compressing them. The current measurement
data can be used to look into the energy characteristics of
running such deep learning models on ESP32.

II. DATASET

The dataset directory consists of two sub-
directories, viz., human_activity_recognition and
current_measurements whose contents are described
below:

A. CSI Traces for various Human Activities
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Fig. 1: Shows the indoor locations where CSI was collected for HAR
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Fig. 2: Shows the outdoor locations where CSI was collected for HAR

The human_activity_recognition directory
contains the CSI traces. They are ordered by the
location where they were collected in the respective
sub-directories (indoors/lab, indoors/corridor,
outdoors/parking, outdoors/yard, refer to Fig. 1
and 2). Please note the position of the transmitter (Tx) and
the receiver (Rx) placed on tripod stands. In the Rx, the
ESP32 pushes the collected CSI to a Raspberry-Pi (Model
3B) device via a serial interface. For each location, CSI
traces for six different activities are recorded (empty –
denoting absence of a person; static activities – standing,
sitting; and dynamic activities – sittingupdown,
jumping, walking). The naming format of each data
file is <location>_<activity>_<timestamp>.txt.
Each row in the file denotes a recorded sample, which has
several entries including the received signal strength (RSS),
IQ samples and so on (see esp_col_desp.md for details).

B. Current Measurements
The Power Profiler Kit II (PPK II) is used to obtain

the live current measurements on ESP32, while the mod-
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els are run to make relevant inferences. It is a time-series
data with timestamp in milliseconds at one column and
current drawn in micro-amperes at the other. Traces are
recorded for non_compressed as well as for quantized
models and stored in folders of the same name. In each
folder there are further sub-folders denoting the architec-
tures of the models (i.e., cnn, fcn, rnn). Inside each
sub-folder, there are nine files, each having current mea-
surements for models with increasing number of parame-
ters. The naming format of current measurement files are
<q/na>_<architecture>_<parameters>.txt, here
<q> denotes quantized models, while <na> denote non-
compressed models.

III. MODELS

We have two kinds of models in our artifacts as discussed
below:

A. KERAS Models [6]

The regular KERAS models cannot be used for
inferencing on microcontroller class devices. They are
not compatible with the TF-LITE MICRO APIs used in the
C++ application programs that run on the microcontrollers
like ESP32. However, it can run on general purpose
computers with enough resources. Such models are saved
in the models/keras directory and is ordered by
architecture type. The saved model has the naming format as,
har_<architecture>_<config>_<compression>.
Here, <architecture> can be either CNN (Convolutional
Neural Network), FCN (Fully Connected Network) or RNN
(Recurrent Neural Network). The <config> denotes the
configuration of the neural network that determines its size
and parameter count.

The <config> for CNN models consists a series of
numbers. Each number indicates the count of residual
blocks, following which we double the number of filter,
while decreasing the size of input by half. For example,
har_resnet_222_qat has 8 residual blocks where we
double the filter size and decrease the size of input of by
half every alternate block.

The <config> for FCN models consists a series
of numbers separated by underscore, denoting the
number of layers and their sizes. For example,
har_fc_50_100_100_50_cqat has 4 layers (excluding
the softmax output), where each layer has 50, 100, 100, 50
neurons respectively. RNNs have a similar <config> to
that of FCN.

B. TF-LITE Models

Such models are obtained from the saved KERAS models
and used for inferencing tasks on the microcontroller. The
TF-LITE models are further converted to C++ files using
the script in scripts/compress_models directory (see
Sec. IV). These files are included and refereed to in the C++
application that runs on ESP32 and performs the inferencing.
These models are stored in tflite directory and is also

ordered by the architecture type. The TF-LITE models have
same format as KERAS models.

There is further a sub-directory called
change_hyperparameters in models/tflite.
The models here deal with changing hyperparameters like the
number of clusters in weight clustering algorithm and sparsity
level for pruning. This folder has further sub-directories,
whose names indicates the number of cluster or sparsity
percentage for all models.

For more details on the compression techniques used, please
refer to our work [1]. To initialize the centroids of the
clustering algorithm we have used K-Means++ algorithm.
For pruning, we have used a constant sparsity throughout
training.

IV. CODEBASE

We divide the codebase into three parts as described below:

A. Data Prepossessing and Visualization
Here we have scripts that are used to read the ESP32

log files in the data directory (see Sec. II) and compute
the CSI amplitude spectrograms that are used for train-
ing the models. We have also provided a sample iPython
notebook, data_viz.ipynb, that can be used to plot
and visualize the spectrograms. All code for this is in the
scripts/data_related folder.

B. Building and Training Models
These contains code that we use to generate models with

different architecture and parameter size (see Sec. III). It also
trains the model on the data given in data folder and tests
it, giving us a accuracy measure. The scripts related to it are
in folder scripts/train_models

C. Compressing Models
These contains code that are used to compress the saved

KERAS models and also converts them to TF-LITE MODEL.
The scripts are stored at scripts/compress_models.
The main file is tf_lite_convert.py which
uses TINYML optimization functions defined in file
tinyml_opt.py, along with some utility functions defined
in tf_lite_convert_utils.py. It also contains script
in file convert_tflite_to_cc.py to convert all
tflite models in a folder to C++ files.
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